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Abstract

A new method of obtaining integral transformation of the Heun equation is
described. The Heun equation is reduced to the so-called hypergeometric
system, a linear Fuchsian system of rank 3, and a Detweiler and Reiter algebraic
analogue of the Katz middle convolution functor is applied. A linear Fuchsian
system of rank 2 associated with the Heun equation is also studied.

PACS numbers: 02.30.GP, 02.30.Hq

1. Introduction

1.1. The Heun equation

The Heun equation [12, p 292] is given by

t (t − 1)(t − λ)y ′′ + {γ (t − 1)(t − λ) + δt (t − λ) + εt (t − 1)}y ′ + αβ(t − a)y = 0, (1)

where ′ = d/dt. This equation has four regular singular points in P
1 and, hence, is Fuchsian.

The Riemann scheme is given by

℘

⎧⎪⎨⎪⎩
0 1 λ ∞
0 0 0 α t

1 − γ 1 − δ 1 − ε β

⎫⎪⎬⎪⎭ ,

where the Fuchs relation

α + β − γ − δ − ε + 1 = 0 (2)

holds. The Heun equation includes only one accessory parameter a, which cannot be
determined by the characteristic exponents.
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If we differentiate the Heun equation (1) with respect to t, we have a third-order linear
differential equation:

t (t − 1)(t − λ)y ′′′ + {(γ + 1)(t − 1)(t − λ) + (δ + 1)t (t − λ) + (ε + 1)t (t − 1)}y ′′

+ {(γ + ε)(t − 1) + (γ + δ)(t − λ) + (δ + ε)t + αβ(t − a)}y ′ + αβy = 0, (3)

for which the Riemann scheme is given by

℘

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 1 λ ∞
0 0 0 1

1 1 1 α t

1 − γ 1 − δ 1 − ε β

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

This shows that the behavior of solutions near regular singular points does not change and
one holomorphic solution is added to form a fundamental set of solutions near each regular
singular point.

Heun’s equation and its confluent cases appear in many areas of mathematical physics.
For instance, the classical problem of handling the Hemholtz or Laplace equation in all but
the simplest coordinate systems leads to separated differential equations (Mathieu’s, Ince’s,
Lamé’s, the spheroidal wave equation) which turn out to be of the Heun class [16]. Other
examples in physics and mathematics include the irradiation-amplified diffusion in crystal, the
line-tension model [17], nonlinear elastic polymers in a random flow [13] and the eigenvalue
problem of the scalar Laplacian for the toric Sasaki–Einstein manifolds [15].

Some properties of the Heun equation are discussed in [16, 17]. Recently, the integral
transformations of the Fuchsian differential equations have attracted a lot of attention
[7, 8, 11, 14, 18], where the Heun equation and the sixth Painlevé equation are studied
in detail. In this paper, we explain a new approach to study the Heun equation by using the
Katz middle convolution functor for the Heun hypergeometric system.

1.2. Hypergeometric system of the Heun equation

It is shown in [12, chapter 4] that a Fuchsian linear differential equation of order n can be
reduced to a system of the form

(t − B)
dY

dt
= AY,

where B is a diagonal matrix, A is a constant matrix and Y = (y1, . . . , yn)
T . Such systems

are called hypergeometric systems.
In particular, the reduction problem for the Heun equation is solved as follows

[12, p 296]. Taking

y1 = y, y2 = ty ′
1 + (γ − 1)y1,

λy3 = (aαβ + ε(1 − γ ))y1 + ((t − 1)γ + tδ)λy ′
1 + (t − 1)tλy ′′

1 ,

the required hypergeometric system is given by⎛⎜⎝t 0 0

0 t − 1 0

0 0 t − λ

⎞⎟⎠
⎛⎜⎝y ′

1

y ′
2

y ′
3

⎞⎟⎠ =

⎛⎜⎝1 − γ 1 0

α21 −δ 1

α31 α32 −ε − 1

⎞⎟⎠
⎛⎜⎝y1

y2

y3

⎞⎟⎠ , (4)

where

α21 = (γ − 1)δ − g0, α31 = αβ(γ − 2) + (1 − γ )ε(δ + γ − 2) + (ε − γ + 2)g0,

α32 = ε(δ + γ − 2) − αβ + g0, g0 = 1

λ
{ε(1 − γ ) + αβa}.
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Eliminating y2 and y3 from (4), we get a scalar differential equation of order 3 for the function
y1 = y which coincides with equation (3).

Each diagonal element of matrix A in (4) is equal to the characteristic exponent of (3)
at the respective singular point modulo integers. The eigenvalues of −A are equal to the
characteristic exponents at infinity of equation (3).

1.3. Outline of results

In section 2, we explain an operation on Fuchsian systems called middle convolution. It is
applied to the hypergeometric system of the Heun equation in section 3. The main result is
given by the theorem which relates two Heun equations with specific values of the parameters
via middle convolution. Further, we study rank 2 Fuchsian systems associated via middle
convolution with the Heun equation. Finally, a conclusion with some more comments rounds
off the paper.

2. Middle convolution

In this section, we discuss the Dettweiler and Reiter algebraic construction of the Katz middle
convolution functor following [2–4] and its significance. An algorithm and a relation of middle
convolution to a specific integral transformation are briefly outlined following [5].

Katz described all irreducible and physically rigid systems on the punctured affine line
in [10] and introduced a middle convolution functor mcμ in the category of perverse sheaves
which preserves important properties of local systems such as the number of singularities, an
index of rigidity and irreducibility, but in general changes the rank and the monodromy group.
By Katz’s theorem, one can obtain any irreducible rigid local system on the punctured affine
line from a local system of rank 1 by applying a suitable sequence of middle convolutions and
scalar multiplications.

Recently, Dettweiler and Reiter gave a purely algebraic analogue of the Katz middle
convolution functor in [2–4]. They presented an algorithm which allows one to construct
Fuchsian systems corresponding under the Riemann–Hilbert correspondence to irreducible
rigid local systems. The main approach in [2, 3] was the generalization of normal forms of
the Pochhammer equation. Dettweiler and Reiter not only reproduced Katz’s main result, but
also presented both the multiplicative and the additive versions of their algebraic analogue,
studied their main properties, gave a cohomological interpretation and applied their theory to
construct explicit algebraic solutions to the sixth Painlevé equation in [4].

The Dettweiler and Reiter algorithm can formally be applied to any Fuchsian system, and
not necessarily the rigid one. It guarantees that the resulting linear system is irreducible and
has the same number of singularities as the initial Fuchsian system. However, the dimension
of matrices of the resulting Fuchsian system may change, and hence the rank of the Fuchsian
system may be different. In [7] the algorithm was applied to the Fuchsian system of rank 2
with four singularities, and Okamoto’s birational transformation (Bäcklund transformation)
was rediscovered for the deformation equation, which is the sixth Painlevé equation in this
case. Another approach to this result is given in [14] where an integral transformation
is applied directly to a scalar Fuchsian differential equation. Although Fuchsian systems
before and after middle convolution are related by a certain integral transformation along
a Pochhammer contour (see below for more details), the algebraic interpretation of middle
convolution is more efficient for some problems than the direct method for scalar Fuchsian
equations. For instance, by using the method of middle convolution one can easily construct
Fuchsian systems of an arbitrary rank equivalent to a given system (or having the same family

3
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of deformation equations [8]) which is more involved by other direct methods. Furthermore,
middle convolution and addition are operations on Fuchsian systems of differential equations
which preserve a number of accessory parameters. It was shown in [8] that these operations
also preserve deformation equations.

The multiplicative version of the middle convolution functor denoted by MCλ is a functor
of the category of finite dimensional C[Fr ]-modules of the free group Fr on r generators
to itself (local systems), where λ ∈ C

× is a parameter. It is a transformation sending r
matrices in GLn(C) to other r matrices in GLm(C), where usually m is not equal to n. Up
to a simultaneous conjugation in GLm(C), this transformation commutes with the Artin braid
group [3]. There exists a parallel functor in the category of the Fuchsian systems, mcμ, which
is related to MCλ via the Riemann–Hilbert correspondence by a monodromy map.

The construction of mcμ is as follows. Let A = (A1, . . . , Ar), Ak ∈ C
n×n. Let us also

fix points t = tk ∈ C, k = 1, . . . , r , and consider a Fuchsian system of rank n given by

dY

dt
=

r∑
k=1

Ak

t − tk
Y. (5)

First, the operation of addition is simply a change of the eigenvalues of the residue matrix:
Ak → Ak + aIn, where a ∈ C and In is the identity matrix.

For μ ∈ C, one defines convolution matrices B = cμ(A) = (B1, . . . , Br) by

Bk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 0 . . . 0

...
...

...
...

...

A1 . . . Ak−1 Ak + μ Ak+1 . . . Ar

...
...

...
...

...

0 . . . 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C

nr×nr (6)

such that Bk is zero outside the kth block row.
The convolution matrices define a new Fuchsian system of rank nr with the same number

of singularities as in the original Fuchsian system:

dY1

dt
=

r∑
k=1

Bk

t − tk
Y1. (7)

This system may be reducible. In general, there are the following invariant subspaces of the
column vector space C

nr :

Lk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

...

0

Ker(Ak)

0

...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(k-th entry), k = 1, . . . , r, (8)

and

K =
r⋂

k=1

Ker(Bk) = Ker(B1 + · · · + Br). (9)

4
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Let us denote L = ⊕r
k=1Lk and fix an isomorphism between C

nr/(K + L) and C
m for some

m. The matrices B̃ = mcμ(A) := (B̃1, . . . , B̃r ) ∈ C
m×m, where B̃k is induced by the action

of Bk on C
m � C

nr/(K + L), are called the additive version of the middle convolution of A

with parameter μ. Thus, the resulting irreducible Fuchsian system of rank m is given by

dY2

dt
=

r∑
k=1

B̃k

t − tk
Y2. (10)

To sum up, the additive version of middle convolution depends on a scalar μ ∈ C and is
denoted by mcμ. It is a transformation on tuples of matrices:

(A1, . . . , Ar) ∈ (Cn×n))r → mcμ(A1, . . . , Ar) = (B̃1, . . . , B̃r ) ∈ (Cm×m))r .

Finally, we describe the relation between the convolution operation cμ and integral
transformations following [5] for completeness.

Let g := (gi,j ) be a matrix with entries gi,j such that they are (multi-valued) holomorphic
functions on X := C\T , T := {t1, . . . , tr} ⊂ C, ti 	= tj for i 	= j. Assume that the path
αr+1 encircles an open neighborhood U of y0 and the path αi encircles the point ti . Then the
matrix-valued function

I
μ

[αr+1,αi ]
(g)(y) :=

∫
[αr+1,αi ]

g(x)(y − x)μ−1 dx, y ∈ U,

is called the Euler transform of g with respect to the Pochhamer contour [αr+1, αi] :=
α−1

r+1α
−1
i αr+1αi and the parameter μ ∈ C.

Let A := (A1, . . . , Ar), Ai ∈ C
n×n be the residue matrices of the Fuchsian system (5)

and F(t) be its fundamental solution. Denote

G(t) :=

⎛⎜⎜⎝
F(t)(t − t1)

−1

...

F (t)(t − tr )
−1

⎞⎟⎟⎠
and introduce the period matrix

Iμ(y) := (
I

μ

[αr+1,α1](G)(y), . . . , I
μ

[αr+1,αr ](G)(y)
)
.

Then according to [5] the columns of the period matrix Iμ(y) are solutions to the Fuchsian
system (7) obtained by the convolution with parameter μ−1, i.e. cμ−1(A), where y is contained
in a small open neighborhood U of y0 (which is encircled by αr+1).

3. Middle convolution and the hypergeometric system of the Heun equation

In this section, we apply the Dettweiler and Reiter algorithm of middle convolution to the
hypergeometric system (4). In the result, we obtain a new hypergeometric system of the Heun
equation with new values of the parameters provided we have a special choice of parameter
μ in middle convolution. The new parameters of the hypergeometric system coincide with
the parameters given in [11] where the integral transformation was applied directly to the
Heun equation. The hypergeometric systems seem to be more convenient and natural to study
special functions such as the Heun function in comparison with the systems studied in [18] via
middle convolution and using the space of initial conditions of the sixth Painlevé equation. We
also conjecture that the hypergeometric systems associated with the Garnier systems would
be useful to calculate easily birational symmetries.

The hypergeometric system of the Heun equation (4) is of rank n = 3 with three finite
singularities t = 0, 1, λ and a singularity at t = ∞. Clearly, it is of form (5) with r = 3

5
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by construction. The nonzero eigenvalues of the residue matrices Ak are 1 − γ,−δ,−1 − ε

respectively. The eigenvalues of the residue matrix at t = ∞ are 1, α, β.

We apply the middle convolution algorithm with parameter μ being not equal to the
eigenvalues of the residue matrix at t = ∞. Also assume that μ 	= 0. In this case, the
convolution matrices are of dimension nr = 9. The corresponding system (7) is reducible.
The invariant subspace K is empty and the subspace L is spanned by six vectors. The quotient
space C

3 � C
9/(K + L) is constructed by adding three more vectors to the basis of the invariant

subspaces, for instance vectors e1, e6, e7 where ek has 1 at position k and other elements are
equal to zero.

The matrices B̃k of the resulting system (10) have a nonzero kth row and are given by

B̃1 =

⎛⎜⎝1 − γ + μ 1/(1 − γ ) 0

0 0 0

0 0 0

⎞⎟⎠ ,

B̃2 =

⎛⎜⎝ 0 0 0
(1−γ )(−(aαβ)+(γ−1)(ε+δλ))

λ
μ − δ b2 + (2−γ +ε)(aαβ+ε−γ ε)

λ

0 0 0

⎞⎟⎠ ,

B̃3 =

⎛⎜⎝ 0 0 0

0 0 0

1 − γ
aαβ+ε−γ ε−((α−ε)(β−ε)+ε)λ

(2−γ +ε)(aαβ+ε−γ ε)+(αβ(−2+γ )−(−1+γ )(−2+γ +δ)ε)λ
μ − 1 − ε

⎞⎟⎠ ,

where b2 = αβ (γ − 2) − (γ − 1) (γ + δ − 2) ε. The nonzero eigenvalues of these matrices
are 1 − γ + μ,μ − δ and μ − 1 − ε respectively. The eigenvalues of the new residue matrix
at t = ∞ of (10) are 1 − μ, α − μ, β − μ.

Next, we make a transformation Y2 = DY3 in (10) with an appropriate matrix
D ∈ GL(3, C) such that the system for Y3 has a form similar to (4). We can calculate that
provided γ 	= 1, the matrix D is diagonal with diagonal elements D11 = 1/(1 − γ ),D22 = 1
and D33(B̃2)23 = 1.

Thus, we have a new hypergeometric system of the Heun equation with new values of the
parameters α1, β1, γ1, δ1, ε1 (ε1 = 1 + α1 + β1 − γ1 − δ1) in the result of middle convolution
applied to system (4). However, this holds only for special values of parameter μ of middle
convolution.

Theorem. The hypergeometric system of the Heun equation (4) is related via middle
convolution to parameter μ and a gauge transformation to another hypergeometric system (4)
with new values of the parameters being given by either

μ = α − 1, (2 − α − α1)(1 − α + β − α1) = 0, α1β1 = (α − 2)(α − β − 1),

γ1 = γ − α + 1, δ1 = δ − α + 1, ε1 = ε − α + 1,

a1 = 1 + β − δ + α(δ − 1 + β(a − 1)) + (α − 1)(α − γ − δ)λ

(α − 2)(α − β − 1)

or

μ = β − 1, (2 − β − α1)(1 + α − β − α1) = 0, α1β1 = −(β − 2)(α − β + 1),

γ1 = γ − β + 1, δ1 = δ − β + 1, ε1 = ε − β + 1,

a1 = −α(1 + (a − 1)β) + (β − 1)(δ − 1 + (β − γ − δ)λ)

(β − 2)(α − β + 1)
.

6
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Note that in the case γ = α − δ (or γ = β − δ), the first (or second) formula for a1 in the
theorem does not depend on λ.

We observe that the residue matrices Ak and the matrices after middle convolution and
gauge transformation differ by μEkk, where Ekk has 1 at position (k, k) and all other elements
zero. This also follows from the general properties of the Euler transform applied to Okubo-
type systems [12].

The parameters in the theorem coincide with parameters given in [11, 18] where the
integral transformation of the Heun equation is studied by different methods. Therefore,
we have given an algebraic interpretation (on the level of the hypergeometric system) of the
integral transformation of the Heun equation.

4. The Heun equation and Fuchsian differential equations with apparent singularities

In this section, we show that function y2 in (4) satisfies the second-order linear Fuchsian
equation with singularities t = 0, 1, λ,∞ and one apparent singularity which is parametrized
by the accessory parameter of the Heun equation. Isomonodromic deformations lead to the
constraint for the parameters, which, in turn, leads to the confluence of the apparent singularity
with the point at infinity. Hence, we have Heun’s equation in the limit. Such confluences
were studied in detail in [18] where the relation to the space of initial conditions of the sixth
Painlevé equation is discussed. In the following section, we shall study middle convolution
with special values of the parameter such that the resulting system (10) is of rank 2 (m = 2).
In this case, a scalar equation for the first (or second) component of vector Y2 in (10) satisfies
the second-order linear Fuchsian equation with one apparent singularity as well.

Recall that a scalar linear differential equation with rational coefficients is called Fuchsian
if it has only regular singularities. An apparent singularity means that the solution is analytic
at this point [9, chapter 3].

The second-order Fuchsian differential equation with singularities t = 0, 1, λ,∞ and
apparent singularity t = L can be written in the following form [9, p 169]:

d2y

dt2
+

(
1 − θ0

t
+

1 − θ1

t − 1
+

1 − θ2

t − λ
− 1

t − L

)
dy

dt

+

(
k1(k2 + 1)

t (t − 1)
+

L(L − 1)M

t(t − 1)(t − L)
− λ(λ − 1)H

t(t − 1)(t − λ)

)
y = 0. (11)

The monodromy representation of this differential equation is a homomorphism, defined up to
a conjugation, from the fundamental group of the punctured plane C \ {0, 1, λ} to GL(2, C).
Monodromy matrices do not depend on λ if L = L(λ) satisfies the sixth Painlevé equation (a
second-order nonlinear differential equation, the solutions of which have no movable critical
points). Equivalently, the monodromy does not depend on λ if functions L(λ) and M = M(λ)

satisfy the following Hamiltonian system:
dL

dλ
= ∂H

∂M
,

dM

dλ
= −∂H

∂L
, (12)

where the Hamiltonian is given by

H = 1

λ(λ − 1)
{L(L − 1)(L − λ)M2 − (θ0(L − 1)(L − λ)

+ θ1L(L − λ) + (θ2 − 1)L(L − 1))M + k1(k2 + 1)(L − λ)}
with θ0 + θ1 + θ2 + k1 + k2 = 0. Thus, the monodromy preserving deformation of linear
equation (11) is governed by the Hamiltonian system (12). We remark that eliminating M(λ)

between these equations yields the sixth Painlevé equation for the function L(λ) [9].

7
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Let us first illustrate how to use equation (11) when a given differential transformation is
applied to the Heun equation.

Assume that the function v(t) satisfies the following Heun equation:

v′′ +

(
γ1

t
+

δ1

t − 1
+

ε1

t − λ

)
v′ +

α1β1t − q1

t (t − 1)(t − λ)
v = 0

with ε1 = 1 + α1 + β1 − γ1 − δ1. Then the function y(t) = v′(t) satisfies equation (11) with
θ0 = −γ1, θ1 = −δ1, θ2 = −1 − α1 − β1 + γ1 + δ1,

L = q1

α1β1
, M = −L2(1 + α1 + β1) − λγ1 + L(1 + α1 + β1 + λγ1 − δ1 + λδ1)

L(L − 1)(L − λ)

and either k1 = α1 + 1, k2 = β1 or k1 = β1 + 1, k2 = α1. Substituting L and M as functions
of λ into system (12) yields a constraint α1β1 = 0. Let us take α1 = 0. Then the apparent
singularity becomes infinity and we get the fact that the function y satisfies equation with four
singularities, which is Heun’s equation, given by

y ′′ +

(
γ

t
+

δ

t − 1
+

ε

t − λ

)
y ′ +

αβt − q

t (t − 1)(t − λ)
y = 0

with γ = γ1+1, δ = δ1+1, ε = 2+β1−γ1−δ1, β1 = −1+αβ/2, q1 = q−αβ/2+δ1−γ1λ−δ1λ.

The condition ε = 1 + α + β − γ − δ should also be satisfied which leads to a constraint on α

and β of the form (α − 2)(β − 2) = 0. We note that transformation y(t) = v′(t) with α = 2
or β = 2 is contained in proposition 6.3 in [18]. However, we have derived it naturally by
using equation (11). In general, if y(t) satisfy a linear differential equation of the form

g2(t)y
′′ + g1(t)y

′ + g0(t)y = 0,

then the function y1 = h0(t)y
′ + h1(t)y satisfies a linear differential equation

p2(t)y
′′
1 + p1(t)y

′
1 + p0(t)y1 = 0,

with p2(t) = g2(g1h0h1−g0h
2
0−g2(h

2
1 +h1h

′
0−h0h

′
1)). So, it is possible that new singularities

are added. By choosing the functions h0 and h1 appropriately, we can add only apparent
singularities. We can also study transformations y1 = h0(t)y

(k) + · · · + hk(t)y, k ∈ N, in a
similar way.

Next, we study function y2 of the hypergeometric system (4). It satisfies the second-order
linear differential equation with the following Riemann scheme:

℘

⎧⎪⎨⎪⎩
0 1 λ L ∞
0 0 0 0 α t

2 − γ −δ −ε 2 β

⎫⎪⎬⎪⎭ ,

where

L = aαβ − (γ − 1)(ε + δλ)

αβ − (γ − 1)(ε + δ)

is an apparent singularity. Thus, we have equation (11) with

θ0 = 2 − γ, θ1 = −δ, θ2 = −ε,

M = − αβ(αβ − (γ − 1)(δ + ε))(a(δ + ε) − ε − δλ)

(aαβ + (γ − 1)ε(λ − 1) − αβλ)((a − 1)αβ + δ(γ − 1 + λ(1 − γ )))

and either k1 = β, k2 = α − 1 or k1 = α, k2 = β − 1. So the functions L and M are
parametrized by the accessory parameter a of the Heun equation. Eliminating a between L
and M yields

M = L(ε + δ) − ε − δλ

(λ − L)(L − 1)
.

8
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In this case, the Hamiltonian system (12) is satisfied provided (1 + α − γ )(1 + β − γ ) = 0.

Hence, L = ∞ and we can reduce equation (11) to the Heun equation. We can also study the
space of initial conditions for the sixth Painlevé equation as in [18]. Similarly, the function y3(t)

of (4) satisfies the second-order linear differential equation with another apparent singularity.

5. Middle convolution and rank 2 Fuchsian systems

In this section, middle convolution with special values of the parameter is applied to the Heun
hypergeometric system. We choose the parameter of middle convolution equal to one of the
eigenvalues of the residue matrix at infinity of system (4), i.e. we compute mc1 and mcα (the
case mcβ is by analogy). In these cases C

2 � C
9/(K + L) because both invariant subspaces

are nonempty, so the resulting Fuchsian system (10) is of rank 2. It is not of type (4) and,
therefore, the aim of this section is to reduce system (10) to the Heun equation by using a
scalar Fuchsian equation of second order with an apparent singularity (11). For the general
theory of Fuchsian differential systems and scalar equations, see, for instance, [9, 1, 6].

5.1. mc1

First, let us consider the case when γ = 2 and apply mc1. By adding the vectors e1 + e6 and
e7 to the basis of K + L, we get system (10) with

B̃1 =
(

0 0

−1/ε 0

)
, B̃3 =

(
0 0

(aαβ−ε)(ε−1)+λ(αβ−2δε)

ε(ε−aαβ+δλ)
−ε

)
,

B̃2 =
(

aαβ−ε+λ(1−2δ)

λ

−ε(ε−aαβ+δλ)

λ

ε−aαβ+λ(2δ−1)

ελ

−aαβ+ε+δλ

λ

)
.

Thus, when γ = 2, the equation for the first component of vector Y2 is the Heun equation
with new values of the parameters α1, β1, γ1 = 0, δ1 = δ, ε1 = α + β − 1 − δ and
a1 = (1 − α − β + aαβ + δ(1 − λ))/(α1β1), (α − 1 − α1)(1 − β + α1) = 0, α1β1 =
(α − 1)(β − 1).

In general, applying mc1 to system (4) and adding vectors e1, e7 to the basis of the invariant
subspaces yield system (10) with

B̃1 =
(

2 − γ 0

0 0

)
, B̃3 =

(
0 0

1 − γ −ε

)
,

B̃2 =
( aαβ−(γ−1)(ε+δλ)

(γ−2)λ
b12

b21
−aαβ+ε(γ−λ−1)+(α+β−1)λ

(γ−2)λ
,

)
,

where b12 and b21 are complicated expressions in the parameters of the Heun equation.
The eigenvalues of the matrices B̃k, k = 1, 2, 3, are as follows: 2 − γ, 0; 1 − δ, 0;−ε, 0.

The residue matrix at infinity is the matrix −(B̃1 + B̃2 + B̃3) with eigenvalues α − 1, β − 1.

Next, we diagonalize this matrix by using a gauge transformation for the rank 2 system
and write down the scalar equation for the first component in (10). It is of form (11)
with θ0 = 2 − γ, θ1 = 1 − δ, θ2 = −1 − α − β + γ + δ and k1(1 + k2) = (α − 1)β.

The apparent singularity L is parametrized by the parameters of the Heun equation and
by the accessory parameter a. Eliminating a between L and M as in the previous section
yields M = ε/(λ − L) + (2 + β − γ − δ)/(L − 1). Substituting L and M into (12)
yields condition (1 + β − γ )(2 + β − γ − δ) = 0 which leads to L = 1. Hence, the
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apparent singularity coalesces with singularity t = 1 and we can choose parameters such
that the equation becomes Heun’s equation (1). For instance, if δ = 2 + β − γ, then
α1 = β, β1 = α−1, γ1 = γ −1, δ1 = 1+β−γ, a1 = (aα−λ)/(α−1), ε1 = α. Alternatively,
we refer the reader to [18] where spaces of initial conditions of the sixth Painlevé equation
were used to study such confluences. Another component of the vector Y2 after the gauge
transformation satisfies the equation of form (11) with other parameters θj , j = 0, 1, 2, and
another apparent singularity L.

5.2. mcα

Similar calculations can be done in the case of middle convolution with parameter α.

The eigenvalues of matrices B̃k, k = 1, 2, 3, in the resulting system (10) are as follows:
1 + α − γ, 0;α − δ, 0;−2 − β + γ + δ, 0. The residue matrix at infinity is the matrix
−(B̃1 + B̃2 + B̃3) with eigenvalues 1 − α, β − α. We can diagonalize this matrix by using
a gauge transformation for the rank 2 system and write down a scalar equation for the
first component of the system (10) after the gauge transformation. It is of form (11) with
θ0 = 1 + α − γ, θ1 = α − δ, θ2 = −2 − β + γ + δ. Also, M and L are parametrized by the
accessory parameter of the Heun equation. Eliminating parameter a from these formulae, we
get that M = ε/(λ − 1) + (γ + δ − 2 − β)/(L − λ). Substituting L and M into (12) yields
condition (1 + β − γ )ε = 0 which in turn leads to L = 1. Hence, the apparent singularity
coalesces with singularity t = 1 and we can choose parameters such that the equation becomes
Heun’s equation (1).

We remark that in special cases, we get Heun’s equation directly for the first component
of the vector Y2 in (10). All arguments also apply for the second component of the vector
Y2. However, it satisfies the equation of form (11) with other parameters and another apparent
singularity. Thus, we have demonstrated how equation (11) is used when middle convolution
is applied to the Heun hypergeometric system.

6. Concluding remarks

We have studied middle convolution for the Heun hypergeometric system and obtained rank 2
and 3 Fuchsian systems associated with the Heun equation. By repeated application of middle
convolution and addition, we can get other systems of a rank greater than 3 by varying the
parameter of middle convolution. We hypothesize that by using the hypergeometric systems,
one can find transformations (e.g., integral or birational) for other special functions including
nonlinear special functions such as the Garnier systems. The simplest example of the sixth
Painlevé equation was considered in [7, 8] which seems to support our conjecture, though we
did not use the associated hypergeometric system. We plan to address this in more detail in a
separate publication.
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